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In neutral-beam heated Tokamaks and the two-energy-component toroidal fusion 
test reactor (TFTR) there is a warm Maxwellian background plasma which can be 
described by a set of macroscopic transport equations, and one or more energetic species 
which are quite non-Maxwellian and should be described by the Fokker-Planck equa- 
tion. The coupling of these systems is by means of sources of particles and energy in the 
multispecies transport equations and a time-dependent Maxwellian target plasma in 
the multispecies Fokker-Planck equations. We have developed a new hybrid code 
which solves the time-dependent equations of these models simultaneously. Numerical 
results for a TFTR are presented. 

1. INTR~DUC~ON 

In this paper we describe a code to be used for solving the differential equations 
of plasma transport in toroidal confinement systems. The energetic species are 
described by velocity space distribution functions, and their slowing down and 
scattering are modeled numerically by a Fokker-Planck collision operator. The 
“warm” background ions and electrons are described by a multifluid transport 
model. 

We cohsider an arbitrary number of such energetic species, which are written 
as distribution functions in three-dimensional phase space, fb(u, 19, r, t), where v 
is velocity magnitude, 8 is the pitch angle and r is the distance from the magnetic 
axis (see Fig. 1). The poloidal flux is taken to be a function only of r; i.e., surfaces 
of constant flux are circular tori. We allow for an arbitrary number of background 
ion species described by densities n,(r, t), all at the same temperature Ti(r, t). 
The electrons. are described by a separate temperature profile T,(r, t), and their 
number density is determined by quasineutrality. Only the poloidal component 
of the magnetic field, Bo(r, t), varies with time. 

* Work performed under the auspices of the U. S. Energy Research and Development Ad- 
ministration, Contract W-7405ENG48. 

23 
Copyright 6 1917 by Academic Press, Inc. 
AU rights of reproduction in any form reserved. ISSN 0021-9991 



24 MIRIN ET AL. 

FIG. 1. Coordinate System 

2. BASIC EQUATIONS 

Our model is described by the equation9 

wt = (afbmc + ffb - s,, + s,, - cbfb + Zb , 

andat = - (ii~~(a~w(~~a) + 1 (s,, t cbh) dv . % 8, 

(a/W@n&) = - WWWWe) - Qd - & + E,j, + c Qeb 
b 

aB,jat = c(aE,/ar). 

(2.1) 

(2.2) 

&bTePe , 
(2.3) 

(2.41 

(2.5) 

Here, Hb is the source profile for species “b”; S,, , S,, and S,, are source or loss 
terms describing the D-T-or reaction; Sb, represents the transfer of (low-energy) 
particles from a hot species to its corresponding background; and 6(a, b) is the 
Kronecker delta. The term r, is the particle flux for species “8; Qe and Qi are 
the electron and ion energy fluxes; QA and & represent energy transfer between 
ions and electrons; Qab represents the heating of species “a” by energetic 
species “b”; Qeb represents the heating of electrons by energetic species “6”; 
Ezjz is ohmic heating; cb is an inverse charge exchange time; I??~ describes the 
acceleration due to the toroidal electric field; and i, is the electron energy con- 

1 Throughout the paper summations over plasma species are assumed to include background 
ions only, except where otherwise noted. 
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finement time. We write the Fokker-Planck collision operator for the energetic 
species in conservative form [I] : 

+ 1 af& 
-i?G-csine 

where 

and 
Gb = Abfb + Bb@fb/aV) + cdaf,/ae> (2.7) 

Hb = Dbfb + Eb(afbblaU) f Fb(afb/a@. (2.8) 

The coefficients of Eqs. (2.7) and (2.8) are given by 

cot e a2gb 
+ 2 au ae 

ah --V2a2;, 

Bb =f3&, 

D = sin e as& 1 agb b -- 
29 ae8 + 2va sin e X 

sin es ae 3 

Eb = Sin e cb , 

F 
+ 

sin 8 a& 
b 

= sin 8 a’& 
-- -- 
2v2 a82 2~ au 7 

where 

v4gb = -857 ; (2,” h &sfs, 

and 

V% = --4~-; (+j’ hl (Ibs (1 + %jfs, 
s 

(2.6) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 
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Here Or = l/l37 is the fine structure constant, re is the classical electron radius 
e2/mec2, and An is the Debye length. The quantity *r, in Eq. (2.6) is given by 

*r, = 45i-(.&e)“/m~. (2.18) 

The quantity “s” in Eqs. (2.15) and (2.16) runs over all species; the background 
ions and electrons are represented as Maxwellians of appropriate density and 
temperature. 

The energy transfer terms Qdb of Eqs. (2.3)-(2.4), where “d” = “a” or “e,” 
are defined as 

Qdb = imd s @fdat>c,, v2 dv, (2.19) 

where W~t>,,b represents those terms of Eq. (2.6) involving the Rosenbluth 
potentials ( gb and hb) for species “b.” Performing the integration in Eq. (2.19), 
we obtain the formula 

where 

(2.20) 

3411) = ij jomfb(u, 0) sin ~9 de. (2.21) 

and fd is the appropriate Maxwellian. 
The particle transfer term sbC of Eq. (2.1) may be defined in two ways. In the 

first method, we set 

where 

(2.22) 

gb(v, r) = (mb/2nTj(r))S’2 exp(+mbu2/Tj(r)). (2.23) 

What we are effectively doing here is subtracting an appropriate Maxwellian from 
the energetic species distribution function, and transferring that number of 
particles to the corresponding background species. In the second method we set 
fb(& 8, r) = 0 if +m$” < #T,(r), and compute the number of particles lost across 
the boundary in velocity space u = (3Tj(r)/m,)l12. This latter method has the 
advantage that the resulting energetic distribution functions will tend to be 
smoother. However, the former method seems more physically correct since a 
background Maxwellian consists of a sampling of particles of various energies-not 
a delta function of energy #Ti ; hence, the particle source term should reflect 
this property. Detailed time dependent comparisons of the two methods have 
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yet to be performed. Preliminary computations indicate, however, that the two 
methods will most likely compare favorably well. 

The toroidal electric field term I& is simply 

(2.24) 

This term has yet to be included in any calculations. 
The form of the inverse charge exchange time is 

cb = COb exp(clbr/a). (2.25) 

The fusion terms are given by the expressions 
-- 

‘%D = -nT UDTvfD 9 

-- 
&T = --nD CDTvfT , 

s,, = nDnT G * 8(V, - (2(3.5 MeV)m,)1/2)/4rrv2. 

(2.26) 

(2.27) 

(2.28) 

The primary transport model represents the collisionless (banana) regime. 
We let 

(2.29) 

Qi = c (Qa’ + W2>hx/~e) re”TJ, (2.30) 
a 

Qe = Qe’, (2.31) 

QA = (3m,U’, - Ti)be) c WwJ Z2, (2.32) 

a & = er,E,, (2.33) 

where rat, ret, Qac, and Qec are Connor’s expressions for the fluxes [2], and 

r, = c z,c , (2.34) 
Q 

r, = 3m~‘2T~‘2/4(2r)1f2 e4nd In A,, , (2.35) 

E,= Ti&%[?& 

a Ze 

0.17 g] (v,)/c man&v,). (2.36) 
a 

The average collision frequency (v) is given by 

(vj) = (413~~‘~) Jam x~‘2e-xjvj(xj) dxj , (2.37) 
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where 
(2.38) 

( 
21/2ne4 In /I Z.2Z 2n 

Vjk = ee 3 Ic - &PT?l2 Ic ) x;“‘h (s a$ (2.39) 
I 3 

h(x) = (1 - ww -dx) + rl’W, (2.40) 

q(x) = 2/7f112 
s 

5 e-tt1/z df. 
0 

(2.41) 

Here, “j” and “k” stand for either “a” or “e” (plasma ions or electrons). Eqs. (2.29) 
and (2.30) basically agree with Connor’s expressions since for a multi-ion plasma 
r2 < I’,“; however, it is necessary to add the correction terms proportional 
to ret so that the model consistently represents both simple and multispecies 
plasmas.2 The expression for the toroidal electric field E, is given by 

where 
Ez = (m,/n,e2~,~,)(1 + &(rlR)1’2)-1je , (2.42) 

jz = A + j, = (c/4n)(l/r)(aiar)(r~,> (2.43) 

and j, is the bootstrap current, for which a formula is given in Appendix A. The 
expression for .j, has not been properly generalized for multispecies plasmas due 
to its high degree of complexity. The values of 6, and 6, in Eq. (2.42) are defined 
in Appendix A. 

It is convenient to write the transport model in a more general form so that 
the form of the transport coeficients can be changed without modifying the basic 
structure of the code. We let 

I’, = c D,d,(i?n,/t?r) + D,i(aTJar) + D,“(aT,/ar) + D,“E, , 
b 

(2.44) 

Qi = 1 Lbd(anb/ar) + Li(t?T@) + Le(i3Tz/8r) + L”E, , 
b 

(2.45) 

Q, = c Mbd(anb/ar) + Mi(i3Ti/ar) + M”(BT,/Br) + M’E, , 
b 

(2.46) 

E, = c &,d(&b/8r) + Ki(aTi/&-) + Ke(8T,/i3r) + K”(l/r)(a/&)(r&), (2.47) 

& = [F Rbd@nb/ar) + R”(aT&-)] ; zbrb , 

QA = c 6Y’dTe - Ti). 
b 

(2.48) 

(2.49) 

Expressions for the coefficients in Eqs. (2&l)-(2.49) are given in Appendix A. 

a For a simple plasma TOG = 0, and I’, should equal rec/Za . 
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In addition to the “banana” regime, the “smoothed banana-plateau” regime 
of Hinton et al. [3] may be implemented. Approximations for these coefficients 
derived by Rutherford [4] appear in Appendix B. 

3. NUMERICAL TECHNIQUES 

The Fokker-Planck collision operator, Eq. (2.6), is integrated using a split 
semi-implicit difference algorithm: 

W - fbO)lAt = (*~&i2)(aW~)i,i (3.1) 

(fb2 - h’)/At = (*J?b/Uj” sin eJ(aHb/ae)i,j (3.2) 

where&j = f(uj , OJ, and the subscript “8 has been dropped. The superscript “0” 
represents the data at time-step n, “1” represents the intermediate data, and “2” 
refers to the data at time-step it + 1. Also, 

Bi,iwz = U4.j + %+a) (3.5) 

Fi+ll2.i = B(Fi.9 + Cd (3.6) 

Avj+l,z = f(Vj+cl - vi> (3.7) 

A 45112 = XL-(&k, - 0 (3.8) 

Aoj = +(Auj+1/2 + Avj-d (3.9) 

Aei = B(Aei+1,2 + Ah-l/2)* (3.10) 
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We see that Eq. (2.6) is differenced in conservative form; that is, the density of 
particles will be precisely conserved modulo boundary terms. One drawback, 
however, is that the method is only first-order accurate for a general nonuniform 
mesh. Note also that the terms of mixed derivative type are treated explicitly. 
This is done so that the difference equations may be expressed in tridiagonal 
form. 

Eqs. (2.2)-(2.5) are differenced using a semi-implicit iterative technique. We may 
express Eqs. (2.2)-(2.5) in vector form as 

A(iW/at) = Z(U) (3.11) 

where U is a K + 3 component vector consisting of K densities, the ion and electron 
energies and the poloidal magnetic field, and the matrix A accounts for the fact 
the K + 1 and K + 2 components of the vector @U/8t) differ from the respective 
terms on the left hand sides of Eqs. (2.3)-(2.4). We write 

w ;+l - U,“)@t = A-l[pY*(Un+l) + (1 - p) 2’p(Un)] (3.12) 

where the implicit operator Z* is linearized with coefficients depending on the 
latest iterate. Products of implicit derivatives are written as 

((8f/&)(i3g/ar)~+1 = (1/2)[(afiar)“+l(agjar)* + (af/ar)*(ag/arY+ll (3.13) 

where * refers to the latest iterate. Derivatives of the form (l/r)(+3r)(D(~h/~r)) 
are approximated as 

Eq. (3.12) is, in general, only first order accurate in space, but both density and 
energy density will be conserved. All of the spatial differences involve at most 
3 points, so that Eq. (3.12) may be viewed as a vector tridiagonal system. A method 
for solving such systems is presented by Killeen et al. [l]. 

It should be noted that the Fokker-Planck equations for the energetic species 
need not be computed at each radial meshpoint. Our model contains an option 
whereby the energetic distributions are stored and advanced at every Kth value of r, 
with K arbitrary. Relevant quantities at intermediate radial points (e.g., energy 
transfer) may then be computed using some form of interpolation-at this writing, 
either linear or cubic splines. This option is indispensable for the efficient running 
of the code, for most of the computer time is spent integrating the Fokker-Planck 
equations. 
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4. BOUNDARY CONDITIONS 

The boundary conditions for the distribution functionf,(u, 8, r) are: 

fbtc~, 8, r) = 0 (4.1) 

t%/w@, 42, r> = 0 (4.2) 

w~wi(o, 4 r) = 0 (4.3) 

twwo4 0, r) = twwb4 7 r> = 0. (4.4) 

In an attempt to impose density conservation, Eqs. (4.2)-(4.4) are replaced by 
conservation conditions of the form 

wwG&h + &@hIW = 0 (4.5) 
and 

twmwi + warn = 0. (4.6) 

These equations are evaluated one half mesh-point from the respective boundaries. 
The boundary conditions for the “transport” dependent variables are: 

(&,/~r)(r = 0) = 0 (4.7) 
(i?T,/h)(r = 0) = 0 (4.8) 
(t?TJi+)(r = 0) = 0 (4.9) 

&(r = 0) = 0 (4.10) 

ndr = 0) = PDF> (4.11) 

T.(r = 4 = 9Ut) (4.12) 

Ti(r = a) = &(t) (4.13) 
(iYJB,/&)(r = a) = 0. (4.14) 

Eqs. (4.7)-(4.9) are also replaced by conservation boundary conditions in an 
attempt to impose density and energy-density conservation. 

5. DIAGNOSTICS 

We compute the total particle number and energy for each species3 

IV, = (2~)~ R 6 n,(r) r dr 

N,(T,) = (2~)~ R 1’ n,(r) T,(r) r dr. 
0 

(5.1) 

(5.2) 

3 All energy integrals computed here are 3 of the true energy. 

5sr123/r-3 
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Here R is the major radius, a is the minor radius, and for the energetic species 
T,(r) is two-thirds of the mean energy per particle. We also keep track of the 
number of injected particles and the injected energy. 

Nt = (2~)~ R It 1’ Jo(r, t) r dr dt (5.3) 
0 0 

N2(Tai) = (2~)~ R 1’ ja J,,(r, t) Tbi(r, t) r dr dt (5.4) 

’ ’ Nbe = N,,i (5.5) 

Nae(Tbe) = (2~9~ R j” la J,(r, t) &T,i(r, t) r dr dt. (5.6) 
0 0 

Here Tbi(r) is the species “b” source temperature profile, T,i(r) is the corresponding 
electron source temperature profile, and Jb(r) is the appropriate source current. 

The number of particles and total energy lost at the limiter are equal to 

Nzrn = (2s~)~ R Jo’ r,(r = a, t) dt (5.7) 

C N:m(Tym) = (2n)2 R - 4 jot Qi(r = a, t) dt 
a 

(5.8) 

NFrn(TFrn) = (27~)~ R - $ jot Qe(r = a, t) dt. 

The ohmic heating input energy is 

QB = (2~r)~ R jot lajz(r, t) E,(r, t) r dr dt 

and the fusion energy is equal to 

F, = (279 R 1” j’ q,(r, t) nT(r, t) F&Z Efr dr dt 
0 0 

P-9) 

(5.10) 

(5.11) 

where Ef = 17.6 MeV and gDT is the D-T-IX reaction cross-section. The approxi- 
mation used for uDT is given by Futch et al. [5], and the computation of G is 
discussed in Marx et al. [6]. 

6. NUMEFUCAL RESULTS 

We first present a one-ion (protons) transport-only problem in which the toroidal 
minor radius a is 14 cm, the major radius R is 109 cm, and the toroidal magnetic 
field B* is 30 kG. The total current Z, given by 

Z = 2n joa jz(r) r dr (6.1) 
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is 40 kA, and the current density is of the form 

j,(r) - (1 - r2/a2). 

33 

(6.2) 

The initial density and temperature profiles are 

n(r) = 1013[1 - .8(r/u)“] cm-3 (6.3) 

T,(r) = .2[1 - .8(r/~r)~] keV (6.4) 

T,(r) = .02 keV ($5) 

and the limiter values (r = a) are held constant in time. 
This problem was run for a total of 60 msec at a time step of 0.1 msec, using 

the smoothed banana-plateau coefficients of Appendix B. Figures 2-5 contain 
profiles of the density, electron temperature, ion temperature and toroidal current 
density, respectively. The temperatures have risen substantially since t = 0. There 
is a mild depression of the density profile and humps in the T, and j, profiles near 
the “limiter” r = a; these are known as “skin effects” (referring to the skin of 
the torus), and the do not occur to any real extent experimentally. 

These results basically agree with those of Hinton et al. [8], except for the fact 
that the on-axis T, and Ti values are off by about 10 %. This is attributable to 

0’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ f ’ ’ 
0 2 4 6 8 10 12 14 

Radius - cm 

FIG. 2. n(r) (part/ems) at t = 60 ms (transport-only prob.). 

0.6- 

0.4- 

0.2- 

0 ' ' t ' 3 ' ' ' ' ' ' ' ' 
0 2 4 6 8 10 12 14 

Radius - cm 

3. T,(r) (kev) at t = 60 ms (transport-only prob.). 
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Radius - cm 

FIG. 4. Ti(r) (kev) at I = 60 ms (transport-only prob.). 

Radius - cm 

FIG. 5. jS(r) (amps/cmz) at t = 60 ms (transport-only prob.). 

differences in our respective transport models, some of which are noted in 
Appendix A. 

We now present a D-T Fokker-Planck transport problem in which a = 90 cm, 
R = 270 cm, B+ = 45 kG and I = 2.5 MA. There is initially a background 
tritium plasma satisfying 

nT(r) = 2 x 1014[1 - .8(r/a)2] cm-3, (6.6) 

Ti(r) = 8[1 - s(r/u)“] keV, (6.7) 

T,(r) = Tdr>, (6.8) 

and the initial current profile is given by Eq. (6.2). We inject a deuterium beam 
of 120 keV from t = 10 msec to t = 300 msec and calculate up to t = 2000 msec 
at a time-step of 2.0 msec. The beam current density is 

&(r) = 8.11 x 1013(.9e-4(rla)2) (6.9) 

and the total current is 180 amps. The quantities T,(u), T&z) and n&z) are held 
constant in time, but nD(a) is allowed to increase in time to take account of the 
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transfer of energetic particles to the background plasma. The transport regime 
is the banana regime of Appendix A. 

Figure 6 contains a plot of the fusion energy generated and the injected beam 
energy as functions of time. The “beam generated fusion energy” is that component 

FIG. 6. Fusion energy vs. time (F.P. transport prob.). 

1 ' 1 ' 1 ' ' J 
ii 20 40 60 80 

Kddius - Clll 

FIG. 7. T,(r) at t = 0 and 3OOms (F.P. transport prob.). 
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of fusion energy which remains after the steady state component is subtracted 
out; i.e., we subtract from Eq. (5.11) a term of the form “et,” where c is the steady 
state fusion reaction rate. We see that the figure of merit Q, defined as the net fusion 
energy divided by the injected energy, is greater than 1. Figure 7 shows the profile 
T,(r) at t = 0 and t = 300 msec. We see that the electrons have heated up due 
to the presence of the hot deuterium. Figure 8 shows the deuterium density as a 
function of I’ at t = 300 and t = 2000 msec. We see that diffusion has taken place 
in that time period. Lastly, Fig. 9 shows a three-dimensional plot of the hot 
deuterium distribution function at r = 67.5 cm, t = 200 msec. 

0 20 40 60 GO 
Rddius - m  

FIG. 8. nD(r) at t = 300 and 2000 ms (F.P. transport prob.). 

0 

FIG. 9. &(u, 0, r = 67.5 cm, t = 200 ms) (F.P. transport prob.). 
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7. FUTURE PLANS 

Future plans call for making the following improvements: 

(A) The model will be generalized to allow for noncircular flux surfaces. 

(B) Particle orbit loss regions will be inserted into velocity space. 

(C) Magnetic compression will be added. 

(D) A more detailed description of neutrals will be added. 

(E) The transport coefficients will be upgraded. 

(F) A more detailed description of beam deposition will be added. 

(G) The condition that the background ions all be at the same temperature 
will be relaxed. 

APPENDIX A 

The coefficients of Eqs. (2.44)-(2.49) for the “banana” regime are: 

Df, = 
-1.48~~(r/R)l/~ . 1 

e2B 2 [ 
man&,) 

a C wdv,) Z, 

* C wb<v,> & - I 
m&d Ti 

s 
z, ( 

D e = 1.48~~(r/R)l/~ 
a e2B02 

(A-1) 

(A.21 

64.3) 

64.4) 
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Lbd = 
- 1.48c2(r/R)1/2 Ti maTi 
e2B02 IL msns+,> [ Zb 

- c msns(v,) c m,n,(w,) (xc2vc> (xcvc> 
s e z,2 [m - &I~ 

Le = 3.7c2(rlR)l12 Ti 
e2Be2 

L” = 
-3.7c(r/R)l12 1 ncTa [ 1 + 

89 c 
(V,,><V,,/v~> ], 

<vedvf! - vJve> 

Mbd = 

- 1 .48c2(r/R)1/2 
e2B 2 e 

Temene(w,> (* + Zb yiz:‘v,,), 
8 

Mi _ 1.48c2(r/R)1/2 T,m,n,(x,v,) - 
e2B02 

M” = 1.48~~(r/R)~/~ <xe2v,) 
e2B02 Temene<we) (i - x), 

&p zz 
-1.48c(r/R)‘12 n,T, 

[ 
5 k.vee>(ve.elv,> 

BO 2 + <ve,(v, - v,eYve> 1 ’ 

Kbd = (-me/i&e2neTe)(l + 6,(r/R)1’*)-1 (c/Bo)(r/R)1’2 a#‘, i- Td, 

Kc = (-m,/S,e2,,)(l + 6,(r/R)1/2)-1 (c/B,)(r/R)‘l” 6, , 

Ke = (8,/t&) Ki, 

(A.3 

w5) 

(A-7) 

(A.8) 

(A-9) 

(A.lO) 

(A.1 1) 

(A.12) 

(A.13) 

(A.14) 

(A.15) 
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(A.16) 

(A.17) 

Ri = --.I7 1 m,n,<v,>lZ,/~ msns<vs>, (A.18) 
s s 

% = (W~JG2/mA (A.19) 

where 

6, = KlGff), (A.20) 

6, = -l.‘W + T,<v,,) &“(-&)/&(&i>), (A.21) 

&ff = 1 naZa2/ns , (A.22) 
a 

Ko@~ = +ee/ve>/~e(v&, - veeYve>> (A.23) 

&@I = ~,1Kv2> + K%e/%>2/<vee(ve - V,3/Ve>)l. (A.24) 

The values of 6, and 6, disagree with those of Hinton et al. [8] and Rosenbluth 
et al. [7] because of imperfections in the treatment of nonlocalized distribution 
functions by Connor’s [2] model collision operator. 

Since 6, < 0, there will be a singularity in Eqs. (A. 13)-(A. 16) if the aspect 
ratio R/a is less than 6, a In such a case, the correction term 8,(r/R)1/2 makes little . 
sense, so it is ignored. 

The bootstrap currentj, is defined by 

where 6, = -2.44, 6, = -0.96 and 6, = 0.42. 

APPENDIX B 

The coefficients in Eqs. (2.42)-(2.49) for the “smoothed banana-plateau” 
regime may be written in the following form: 

CSBP = cBf(c) (B-1) 

where C, is the coefficient C for the banana regime, as defined in Appendix A, 
and CsBp is the value for the smoothed banana-plateau regime. 
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Values of the various .f(C) may be found in Table B-l. 

TABLE B-l 

c f(C) 

D,“, 
D,i 

&” 
&” 
Mad 
Mi 
M” 
M” 

Lb6 grTi terms 
other terms 

L” QI’T, terms 
other terms 

L” 
L” 

R” 

61, (k = l,..., 5) 

Here, 
011 = -1.12/(1. + 1.78v,*) 
a2 = - 1.501, - 1.25/(1. + .66~,*) 
aya = (y - 1.5) 011 
01~ = -2.44/(1. + .85v,*) 
fll = - 1.25/(1. + .66v,*) 
,t$ = --1.5/3, - 2.64/(1. + .35v,*) 

P3 = (v - 1.5)/G 
p4 = -4.35/(1. + .4v,*) 
y3 = -0.48/(1. + .36vi*) 
S,l = aq 
S,l = --1.5&l + p4 
S,l = (y - 1.5) S,l 
S,l = 1.96 
S,l = --1.96/(1. + Y,*) 
vi* = 4 Ir, RSIzB6n,e4 In A,,/3r1/2BeTiz 
v,* = d/z Ti2vi*/T82 

y = (1.33 + 3v,*)/(l + vi*). 

03.2) 
(B.3) 
(B.4) 
(B-5) 
(B.6) 
(B-7) 
03.8) 
(B.9) 

(B. 10) 
(B.ll) 
(B.12) 
(B.13) 
(B.14) 
(B.15) 
(B.16) 
(B.17) 
(B.18) 



MODEL FOR A TOKAMAK PLASMA 41 

The superscript “0” in Table B-l means that the superscripted variable should 
be evaluated with v,* = vi* = 0. 
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